

C2 series package: 1200V 200A IGBT module

Datasheet

Equivalent Circuit Schematic

Features:

- IGBT 1200V/200A
- Planar Field Stop Fast IGBT technology
- VCE(sat) with positive temperature coefficient
- · High RBSOA capability
- Ultra Low dynamic losses

Options:

pre-applied TIM (option +M01)

Typical Applications:

- Inductive Heating
- Welding
- High Frequency Switching Application

IGBT, Inverter / IGBT Maximum Rated Values

Collector-emitter Voltage	Tvj = 25°C	VCES	1200	V
Continuous DC Collector Current		ICnom	200	А
	Tc = 80°C, T _{vj max} = 150°C	Ic	220	Α
Repetitive Peak Collector Current	ICRM = 2 x Icnom	ICRM	400	А
Total Power Dissipation	Tc = 25°C, T _{vj max} = 150°C	Ptot	1135	W
Gate-emitter Peak Voltage		VGES	±20	V

Characteristic Values					typ.	max.		
Collector-emitter Saturation Voltage ¹⁾	Ic = 200A, VgE = 15V	T _{vj} = 25°C T _{vj} = 125°C T _{vj} = 150°C	VCEsat		2.50 2.78 2.95	3.00	٧	
Gate Threshold Voltage	VCE = VGE, IC = 2mA, Tvj = 25	5°C	VGEth	5.0	6.0	7.0	V	
Gate Charge	VgE = -8V/15V, VcE = 600V,	Tvj = 25°C	QG	_	0.58	_	μC	
Internal Gate Resistor	Tvj = 25°C		RGint	_	4	_	Ω	
Input Capacitance	Vce = 25V, Vge = 0V		Cies	-	8.45	-	nF	
Reverse Transfer Capacitance	f = 100kHz, T _{vj} = 25°C		Cres	_	0.38	_	nF	
Collector-emitter Cutoff Current	VcE = 1200V, VGE = 0V, Tvj =	= 25°C	ICES	_	_	2	μΑ	
Gate-emitter Leakage Current	VCE = 0V, VGE = ±20V, Tvj = 3	25°C	IGES	-	_	±200	nA	
Turn-on Delay Time, Inductive Load	IC = 200A, VCE = 600V VGE = ±15V Rgon = 3.0Ω	Tvj = 25°C Tvj = 125°C Tvj = 150°C	tdon	-	61 63 64	-	ns	
Rise Time, Inductive Load	Ic = 200A, VcE = 600V VGE = ±15V Rgon = 3.0Ω	Tvj = 25°C Tvj = 125°C Tvj = 150°C	tr	-	53 58 63	-	ns	
Turn-off Delay Time, Inductive Load	IC = 200A, VCE = 600V VGE = ±15V RGoff =3.0Ω	Tvj = 25°C Tvj = 125°C Tvj = 150°C	tdoff	-	233 270 273	-	ns	
Fall Time, Inductive Load	IC = 200A, VCE = 600V VGE = ± 15 V RGoff = 3.0Ω	Tvj = 25°C Tvj = 125°C Tvj = 150°C	tf	-	33 34 36	-	ns	
Turn-on Energy Loss per Pulse	IC = 200A, VCE = 600V, $L\sigma$ = 80nH, VGE = ±15V, RGon = 3.0 Ω	Tvj = 25°C Tvj = 125°C Tvj = 150°C	Eon	_	20.0 28.4 31.0	-	mJ	
Turn-off energy Loss per Pulse	IC = 200A, VCE = 600V, L_{σ} = 80nH, VGE = ±15V RGoff = 3.0 Ω	T _{Vj} = 25°C T _{Vj} = 125°C T _{Vj} = 150°C	Eoff	-	5.3 9.2 10.5	_	mJ	

¹⁾ Terminal impedance is not included.

Thermal Resistance, Junction to Case	Per IGBT / IGBT	RthJC	I	0.11	ı	K/W
Temperature under Switching Conditions		Tvj op	-40		150	°C

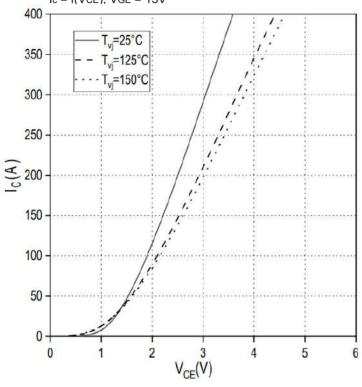
Diode, Inverter Maximum Rated Values

Repetitive Peak Reverse Voltage	Tvj = 25°C	VRRM	1200	V
Continuous DC Forward Current		lF	200	А
Repetitive Peak Forward Current	ICRM = 2 x Ifnom	IFRM	400	Α

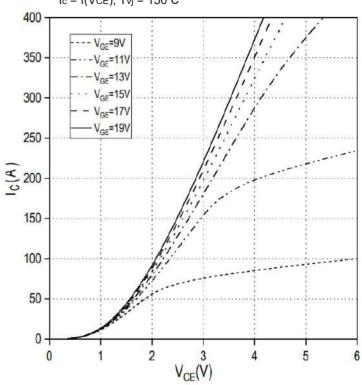
Characteristic Values				min.	typ.	max.	
Forward Voltage	If = 200A, VGE = 0V	Tvj = 25°C Tvj = 125°C Tvj = 150°C	VF		2.38 2.50 2.52	2.80	V
Peak Reverse Recovery Current	IF = 200A, VR = 600V -di _F /dt = 2800A/usn (Tv _j = 150°C) VGE = -15V	Tvj = 25°C Tvj = 125°C Tvj = 150°C	lгм	-	80 90 90	_	A
Recovery Charge	IF = 200A, VR = 600V -di _F /dt = 2800A/usn (T _{vj} = 150°C) VGE = -15V		QR	-	5.5 12.5 15.0	-	uC
Reverse Recovery Energy	IF = 200A, VR = 600V -di _F /dt = 2800A/usn (T _{Vj} = 150°C) VGE = -15V	T _{vj} = 25°C T _{vj} = 125°C T _{vj} = 150°C	Erec	-	1.90 5.50 7.00	-	mJ
Thermal Resistance, Junction to Case	Per Doide / Diode		RthJC		0.25	_	K/W
Temperature under Switching Conditions			Tvj op	-40		150	°C

Module

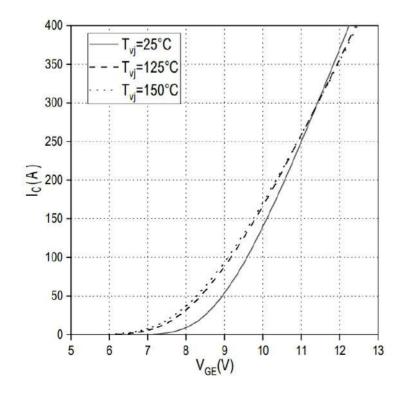
Isolation Test Voltage	RMS, f = 50Hz, t = 1min	VisoL	3.0	kV
Material of Module Baseplate			Cu	
Internal Isolation	(class 1, IEC 61140) Basic insulation (class 1, IEC 61140)		AL2O3	
Creepage Distance	Terminal to heatsink Terminal to terminal		29.0 23.0	mm
Clearance	Terminal to heatsink Terminal to terminal		23.0 11.0	mm
Comparative Tracking Index		СТІ	>200	

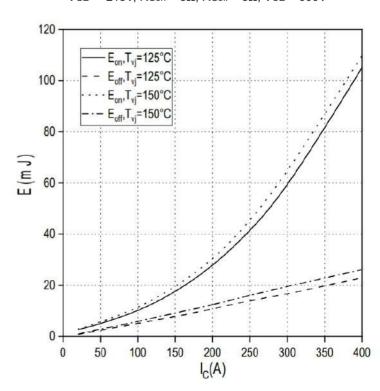

min. typ. max.

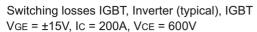
Thermal resistance, case to heatsink	per module λPaste = 1W/(m·K)/λgrease = 1W/(m·K)	RthCH		0.01		K/W
Stray Inductance Module		LsCE	-	20	-	nΗ
Module Lead Resistance, Terminals-Chip	Tc = 25°C, Per Switch	Rcc'+EE'	1	0.70	-	mΩ
Storage Temperature		Tstg	-40	_	125	°C
Modul MountingTorque	M5	М	4.0	_	6.0	Nm
Terminal MountingTorque	M6	М	4.0	-	6.0	Nm
Weight		G	-	320	-	g

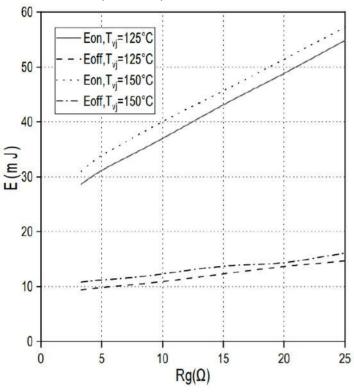


Circuit Diagram

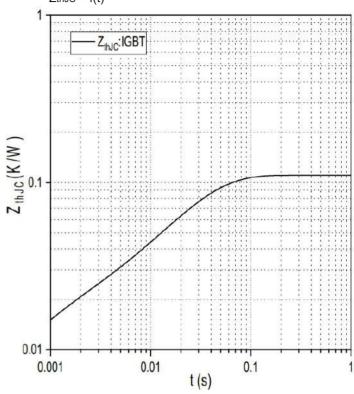

Output characteristic IGBT, Inverter (typical), IGBT Ic = f(VCE), VGE = 15V

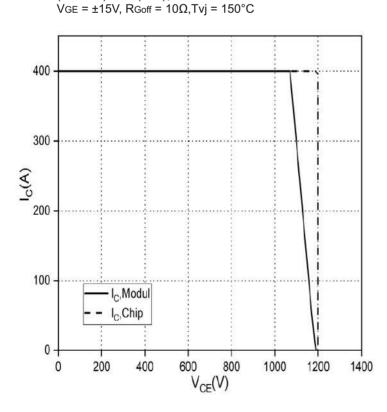

Output characteristic IGBT, Inverter (typical), IGBT $I_c = f(VcE)$, $T_{vj} = 150$ °C

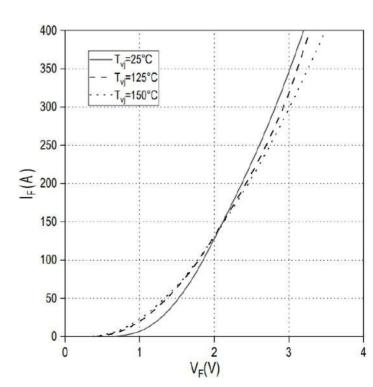

Transfer characteristic IGBT,Inverter(typical), IGBT $I_C = f(VGE)$, VCE = 20V

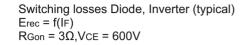


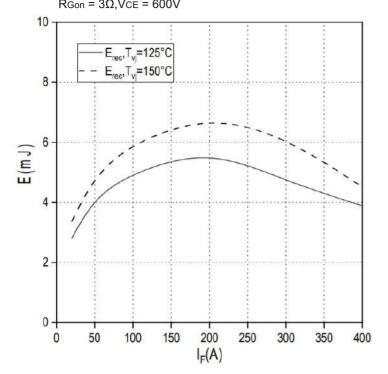
Switching losses IGBT, Inverter (Typical), IGBT Eon = f(Ic), Eoff = f(Ic) VGE = $\pm 15V$, RGon = 3Ω , RGoff = 3Ω , VCE = 600V



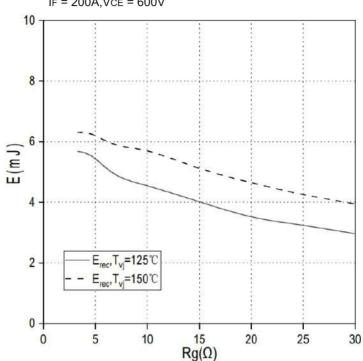


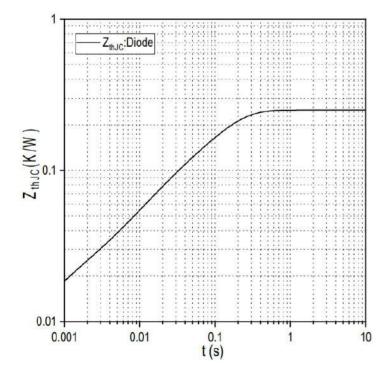

Transient thermal impedance IGBT, Inverter $Z_{thJC} = f(t)$

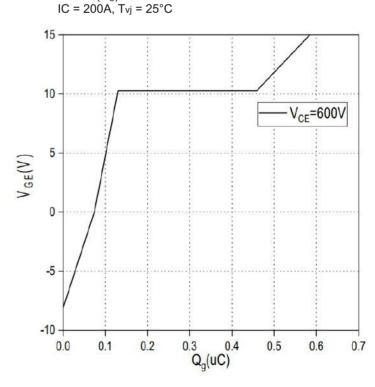

Reverse bias safe operating area IGBT, Inverter (RBSOA) Ic = f(VcE),



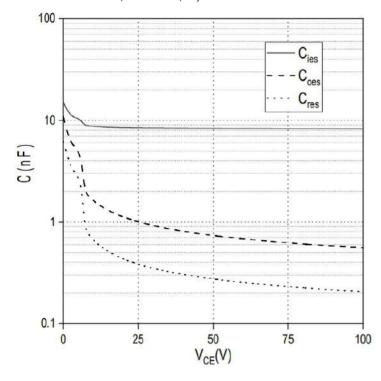
Forward characteristic of Diode, Inverter (typical) IF = f(VF)



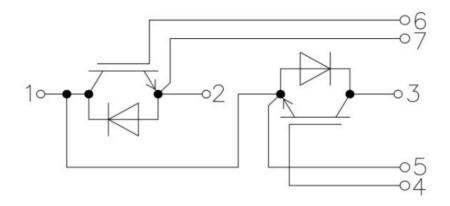



Switching losses Diode, Inverter (typical) $E_{\text{rec}} = f(R_G)$ $I_F = 200A, V_{CE} = 600V$

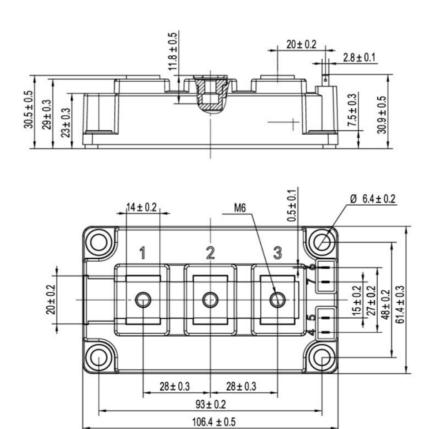
Transient thermal impedance Diode , Inverter $\mathsf{ZthJC} = \mathsf{f}(\mathsf{t})$



Gate charge characteristic, IGBT, Inverter (typical) VGE = f(Qg)



Capacity characteristic, IGBT, Inverter (typical) C = f(VCE) f = 100kHz, VGE = 0 V, $Tvj = 25^{\circ}C$



Internal Circuit

Package Dimension Dimensions in Millimeters

Terms and Conditions of Usage

The data contained in this product datasheet is exclusively intended for technically trained staff. You and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. Therefore, products must be tested for the respective application in advance. Application adjustments may be necessary.

The user of Technicon products is responsible for the safety of their applications embedding Technicon products and must take adequate safety measures to prevent the applications from causing a physical injury, fire or other problem if any of Technicon products become faulty. The user is responsible to make sure that the application design is compliant with all applicable laws, regulations, norms and standards.

Except as otherwise explicitly approved by Technicon in a written document signed by authorized representatives of Technicon, Technicon products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Technicon does not assume any liability arising out of the applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets or other intellectual property rights, nor the rights of others.

Technicon makes no representation or warranty of non-infringement or alleged non-infringement of intellectual property rights of any third party which may arise from applications. This document supersedes and replaces all information previously supplied and may be superseded by updates. Technicon reserves the right to make changes.

For any questions or suggestions, please contact us at info@technicon.asia.